Product Code Database
Example Keywords: science -mobile $43
barcode-scavenger
   » » Wiki: Planetary-mass Moon
Tag Wiki 'Planetary-mass Moon'.
Tag

A planetary-mass moon is a planetary-mass object that is a natural satellite of another such object. They are large and ellipsoidal (sometimes spherical) in shape. Moons may be in hydrostatic equilibrium due to tidal or radiogenic heating, in some cases forming a . Two moons in the Solar System, Ganymede and Titan, are larger than the planet Mercury, and a third, Callisto, is just slightly smaller than it, although all three are less massive. Additionally, seven – Ganymede, Titan, Callisto, Io, , Europa, and Triton – are larger and more massive than the dwarf planets and .

The concept of satellite planets – the idea that all planetary-mass objects, including moons, are – is used by some planetary scientists, such as , who are more concerned with whether a celestial body has planetary geology (that is, whether it is a planetary body) than its solar or non-solar orbit (planetary dynamics). This conceptualization of planets as three classes of objects (classical planets, and satellite planets) has not been accepted by the International Astronomical Union (the IAU).


Early history
The distinction between a satellite and a classical planet was not recognized until after the heliocentric model of the Solar System was established. When in 1610 discovered the first satellites of another planet (the four of Jupiter), he referred to them as "four planets flying around the star of Jupiter at unequal intervals and periods with wonderful swiftness." Similarly, Christiaan Huygens, upon discovering Saturn's largest moon Titan in 1655, employed the terms "planeta" (planet), "Stella" (star), "luna" (moon), and the more modern "satellite" (attendant) to describe it. , in announcing his discovery of Saturn's moons Iapetus and Rhea in 1671 and 1672, described them as Nouvelles Planetes autour de Saturne ("New planets around Saturn"). However, when the Journal de Scavans reported Cassini's discovery of two new Saturnian moons (Tethys and Dione) in 1686, it referred to them strictly as "satellites", though sometimes to Saturn as the "primary planet". When William Herschel announced his discovery of two objects in orbit around Uranus (Titania and Oberon) in 1787, he referred to them as "satellites" and "secondary planets". All subsequent reports of natural satellite discoveries used the term "satellite" exclusively,See primary citations in Timeline of discovery of Solar System planets and their moons though the 1868 book Smith's Illustrated Astronomy referred to satellites as "secondary planets".


Modern concept
In the modern era, Alan Stern considers satellite planets to be one of three categories of planets, along with and classical planets. The term ("planetary-mass object") covers all three populations. Stern's and the IAU's definition of 'planet' depends on hydrostatic equilibrium – on the body's mass being sufficient to render it plastic, so that it relaxes into an ellipsoid under its own gravity. The IAU definition specifies that the mass is great enough to overcome 'rigid-body forces', and it does not address objects that may be in hydrostatic equilibrium due to a subsurface ocean or (in the case of Io) due to magma caused by tidal heating. Many of the larger icy moons could have subsurface oceans.

The seven largest moons are more massive than the dwarf planet , which is known to be in hydrostatic equilibrium. (They are also known to be more massive than , a dwarf planet even more massive than Pluto.) These seven are Earth's , the four Galilean moons of Jupiter (Io, Europa, Ganymede and Callisto), and the largest moons of Saturn (Titan) and of Neptune (Triton). Ganymede and Titan are additionally larger than the planet Mercury, and Callisto is almost as large. All of these moons are ellipsoidal. That said, the two moons larger than Mercury have less than half its mass, and it is mass, along with composition and internal temperature, that determine whether a body is plastic enough to be in hydrostatic equilibrium. Io, Europa, Ganymede, Titan, and Triton are generally believed to be in hydrostatic equilibrium, but Earth's Moon is known not to be in hydrostatic equilibrium, and the situation for Callisto is unclear.

Another dozen moons are ellipsoidal as well, indicating that they achieved equilibrium at some point in their histories. However, it has been shown that some of these moons are no longer in equilibrium, due to them becoming increasingly rigid as they cooled over time.

Neptune's second-largest moon Proteus (Neptune VIII) has occasionally been included by authors discussing or advocating geophysical conceptions of the 'planet'.Emily Lakdawalla et al., What Is A Planet? The Planetary Society, 21 April 2020 It is larger than Mimas but is quite far from being round.


Current equilibrium moons
Determining whether a moon is currently in hydrostatic equilibrium requires close observation, and is easier to disprove than to prove.

Earth's entirely rocky moon solidified out of equilibrium billions of years ago, but most of the other six moons larger than Pluto, four of which are predominantly icy, are assumed to still be in equilibrium. (Ice has less tensile strength than rock, and is deformed at lower pressures and temperatures than rock.) The evidence is perhaps strongest for Ganymede, which has a magnetic field that indicates the fluid movement of electrically conducting material in its interior, though whether that fluid is a metallic core or a subsurface ocean is unknown.Planetary Science Decadal Survey Community White Paper, Ganymede science questions and future exploration One of the mid-sized moons of Saturn (Rhea) may also be in equilibrium,P.C. Thomas (2010) 'Sizes, shapes, and derived properties of the Saturnian satellites after the Cassini nominal mission' , Icarus 208: 395–401 as may a couple of the moons of Uranus (Titania and Oberon). However, the other ellipsoidal moons of Saturn (, , Tethys, Dione and Iapetus) are no longer in equilibrium. In addition to not being in equilibrium, Mimas and Tethys have very low densities and it has been suggested that they may have non-negligible internal porosity, in which case they would not be satellite planets. The situation for Uranus's three smaller ellipsoidal moons (, Ariel and Miranda) is unclear, as is that of Pluto's moon Charon.

The TNO moons Eris I Dysnomia, Orcus I Vanth, and possibly Varda I Ilmarë are at least the size of Mimas, the smallest ellipsoidal moon of Saturn. However, trans-Neptunian objects appear to become solid bodies at a larger size (around 900–1000 km diameter) than the moons of Saturn and Uranus (around 400 km diameter). Both Dysnomia and Vanth are dark bodies smaller than 900–1000 km, and Dysnomia is known to be low-density, suggesting that it cannot be solid. Consequently, these bodies have been excluded.


List
– believed to be in equilibrium
– confirmed not to be in equilibrium
– uncertain evidence

of Satellites of Satellites of
Satellites of Satellites of
Satellites of

+List of ellipsoidal moonsMost figures are from the NASA/JPL list of Planetary Satellite Physical Parameters , apart from the masses of the Uranian moons, which are from Jacobson (2014). ! colspan=2Moon ! rowspan=2 class="unsortable"Image ! colspan=2Radius ! colspan=2Mass ! data-sort-type="number"Density ! data-sort-type="number"Surface gravity ! rowspan=2 data-sort-type="number"Year of
discovery ! rowspan=2
Hydrostatic
equilibrium?
156.4% 201.8% 0.1461610

148.2% 183.2% 0.1381655

138.8% 146.6% 0.1261610

104.9% 121.7% 0.1831610

100% 100% 0.165Prehistoric

89.9% 65.4% 0.1341610

79.9% 29.1% 0.0801846

45.4% 4.6% 0.0401787

44.0% 3.1% 0.0271672

43.8% 4.2% 0.0361787

42.3% 2.5% 0.0221671

34.7% 2.1% 0.0291978

33.7% 1.7% 0.0231851

33.3% 1.7% 0.0281851

32.3% 1.5% 0.0241684

30.7% 0.84% 0.0151684

14.5% 0.15% 0.0111789

13.6% 0.09% 0.0081948

11.4% 0.05% 0.0061789

Methone, Pallene, and, with less certainty, Aegaeon are in hydrostatic equilibrium. However, as they are not planetary-mass objects, these are not included as planetary-mass moons.


Atmospheres
Titan has a denser atmosphere than Earth, with a surface pressure of 1.4 bar, while Triton has a relatively thinner atmosphere of 14 μbar; Titan and Triton are the only known moons to have atmospheres significant enough to drive weather and climate processes. Io (1.9 ) and Callisto (26 ) have very thin atmospheres, but still enough to have collisions between atmospheric molecules. Other planetary-mass moons only have at most. A Moon with Atmosphere , Emily Lakdwalla, The Planetary Society (8 April 2015) Exospheres have been detected around Earth's Moon, Europa, Ganymede, Enceladus, Dione, and Rhea. An exosphere around Titania is a possibility, though it has not been confirmed.


See also
  • List of gravitationally rounded objects of the Solar System
  • List of Solar System objects by size


Further reading

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
9s Time